6.5.1 Rumus bagi sin (A ± B), kos (A ± B), tan (A ± B), sin 2A, kos 2A, tan 2A (Contoh Soalan) Contoh 2: Buktikan setiap identity trigonometri yang berikut. \(\begin{array}{l}\text{(a)}\frac{1+kos2x}{\sin2x}=kotx\\\text{(b)}kotA\mathrm{sek}2A=kotA+\tan2A\\\text{(c)}\frac{sinx}{1-kosx}=kot\frac x2\end{array}\) Penyelesaian: (a) \(\begin{array}{l}Sebelah\text{ }kiri\\=\frac{1+kos2x}{\sin2x}\\=\frac{1+{(2kos^2x-1)}}{2\sin xkosx}\\=\frac{\cancel2kos^\cancel2x}{\cancel2\sin x\cancel{kosx}}\\=\frac{kosx}{\sin x}\\=kotx=Sebelah\text{ }kanan\end{array}\) (b) \(\begin{array}{l}Sebelah\text{ }kanan\\=kotA+\tan2A\\=\frac{kosA}{\sin A}+\frac{\sin2A}{kos2A}\\=\frac{kosAkos2A+\sin A\sin2A}{\sin Akos2A}\\=\frac{kosA{(kos^2A-\sin^2A)}+\sin A{(2\sin AkosA)}}{\sin Akos2A}\\= \frac{kos^3A-kosA\sin^2A+2\sin^2AkosA}{\sin Akos2A}\\=\frac{kos^3A+kosA\sin^2A}{\sin Akos2A}\\=\frac{kosA{(kos^2A+\sin^2A)}}{\sin Akos2A}\\=\frac{kosA}{\sin Akos2A}\leftarrow\boxed{\sin^2A+kos^2A=1}\\={(\frac{kosA}{\sin A})}{(\frac1{kos2A})}\\=kotA\mathrm{sek}2A\\=Sebelah\text{ }kiri\end{array}\) (c) … Read more