2.7.2 Pembezaan, SPM Praktis (Kertas 1 Soalan 11 – 20)


Soalan 11:
Diberi fungsi graf f ( x ) = h x 3 + k x 2  mempunyai fungsi kecerunan f(x)=12 x 2 258 x 3  
dengan dan k ialah pemalar. Cari nilai h dan k.

Penyelesaian:
f ( x ) = h x 3 + k x 2 = h x 3 + k x 2 f ( x ) = 3 h x 2 2 k x 3 f ( x ) = 3 h x 2 2 k x 3  
Tetapi, diberi f ( x ) = 12 x 2 258 x 3
dengan perbandingan,
3h = 12 atau 2k = 258
h = 4  atau k = 129 


Soalan 12:
Diberi y= x 2 x+3 , tunjukkan  dy dx = x 2 +6x ( x+3 ) 2 .  Cari  d 2 y d x 2  dalam bentuk paling ringkas.

Penyelesaian
y = x 2 x + 3 d y d x = ( x + 3 ) ( 2 x ) x 2 .1 ( x + 3 ) 2 = 2 x 2 + 6 x x 2 ( x + 3 ) 2 d y d x = x 2 + 6 x ( x + 3 ) 2 (tertunjuk)

d 2 y d x 2 = ( x + 3 ) 2 ( 2 x + 6 ) ( x 2 + 6 x ) .2 ( x + 3 ) ( x + 3 ) 4 d 2 y d x 2 = ( x + 3 ) [ ( x + 3 ) ( 2 x + 6 ) 2 ( x 2 + 6 x ) ] ( x + 3 ) 4 d 2 y d x 2 = [ 2 x 2 + 6 x + 6 x + 18 2 x 2 12 x ] ( x + 3 ) 3 d 2 y d x 2 = 18 ( x + 3 ) 3


Soalan 13:
Jika y = x2 + 4x, tunjukkan   x 2 d 2 y d x 2 2x dy dx +2y=0.

Penyelesaian
y = x 2 + 4 x d y d x = 2 x + 4 d 2 y d x 2 = 2 x 2 d 2 y d x 2 2 x d y d x + 2 y = x 2 ( 2 ) 2 x ( 2 x + 4 ) + 2 ( x 2 + 4 x ) = 2 x 2 4 x 2 8 x + 2 x 2 + 8 x = 0 (tertunjuk)


Soalan 14:
Diberi y = x (6 – x), ungkapkan  y d 2 y d x 2 +x dy dx +18  dalam sebutan x yang paling ringkas.
Seterusnya, cari nilai yang memuaskan persamaan  y d 2 y d x 2 +x dy dx +18=0.

Penyelesaian:
y = x ( 6 x ) = 6 x x 2 d y d x = 6 2 x d 2 y d x 2 = 2 y d 2 y d x 2 + x d y d x + 18 = ( 6 x x 2 ) ( 2 ) + x ( 6 2 x ) + 18 = 12 x + 2 x 2 + 6 x 2 x 2 + 18 = 6 x + 18 y d 2 y d x 2 + x d y d x + 18 = 0 6 x + 18 = 0 x = 3



Soalan 15:
Cari koordinat bagi titik pada lengkung, y = (4x – 5)2 supaya kecerunan normal lengkung itu ialah ⅛.

Penyelesaian:
y = (4x – 5)2
dy/dx = 2 (4x – 5). 4 = 32x – 40

Diberi normal ialah ⅛, maka kecerunan tangen ialah –8.
dy/dx = –8
32x – 40 = –8
32x = 32
x = 1
y = [4 (1) – 5]2= 1

Hence, the coordinates of the point on the curve, y= (4x – 5)2 is (1, 1).


Soalan 16:
Suatu lengkung mempunyai fungsi kecerunan kx2 – 7x, dengan keadaan k ialah pemalar. Tangen kepada lengkung di titik (1, 4) adalah selari dengan garis lurus y + 2x –1 = 0.
Cari nilai k.

Penyelesaian:
Diberi fungsi kecerunan kx2 – 7x selari dengan garis lurus y + 2x –1 = 0
dy/dx = kx– 7x

y
+ 2x –1 = 0, y = –2x + 1, kecerunan garis lurus = –2
Maka kx– 7x = –2

Di titik (1, 4),
k (1)2– 7(1) = –2
k – 7 = –2
k = 5


Soalan 17:


Dalam rajah di atas, garis lurus PR adalah normal kepada lengkung y = x 2 2 + 1  at Q.
Cari nilai k.

Penyelesaian:
y= x 2 2 +1 dy dx =x Di titik Q, koordinat-x=2, Kecerunan lengkung,  dy dx =2 Maka, kecerunan normal lengkung itu, PR= 1 2 30 2k = 1 2 6=2+k k=8


Soalan 18:
Garis normal kepada lengkung y = x2 + 3x pada titik P adalah selari dengan garis lurus y = –x + 12. Cari persamaan garis normal kepada lengkung itu pada titik P.

Penyelesaian:
Diberi normal kepada lengkung di titik P adalah selari kepada garis lurus y = –x + 12. Maka, kecerunan normal lengkung itu = –1.
Seterusnya, kecerunan tangen kepada lengkung = 1

y
= x2 + 3x
dydx = 2x + 3
2x + 3 = 1
2x = –2
x = –1
y = (–1)+ 3 (–1)
y = –2
Titik P = (–1, –2).

Persamaan garis normal kepada lengkung itu pada titik P ialah,
y – (–2) = –1 (x – (–1))
y + 2 = – x – 1
y = – x – 3



Soalan 19:
Diberi y = 3 4 x 2 , cari perubahan kecil dalam x yang akan menyebabkan menyusut daripada 48 kepada 47.7.

Penyelesaian:
y= 3 4 x 2 dy dx =( 2 ) 3 4 x= 3 2 x δy=47.748=0.3 perubahan kecil dalam x kepada y δx δy dx dy δx= dx dy ×δy δx= 2 3x ×( 0.3 ) δx= 2 3( 8 ) ×( 0.3 ) y=48 3 4 x 2 =48 x 2 =64 x=8 δx=0.025


Soalan 20:
Isipada air, Icm3, dalam satu bekas diberi oleh I = 1 5 h 3 + 7 h , dengan keadaan h cm ialah tinggi air dalam bekas itu. Air dituang ke dalam bekas itu dengan kadar 15cm3s-1. Cari kadar perubahan tinggi air, dalam cms-1, pada ketika tingginya ialah 3cm.

Penyelesaian:
I = 1 5 h 3 + 7 h d I d h = 3 5 h 2 + 7 = 3 h 2 + 35 5  

Diberi  dI dt =15h=3 Kadar perubahan tinggi air= dh dt dh dt = dh dI × dI dt Petua rantai dh dt = 5 3 h 2 +35 ×15 dh dt = 75 62  cms 1

Leave a Comment