2.10.1 Fungsi Kuadratik, SPM Praktis (Kertas 1 Soalan 1 – 10)


Soalan 1:
Diberi persamaan kuadratik mx2 + (3 – 2m)+ m – 5 = 0.
Cari nilai m atau julat nilai m bagi setiap kes yang berikut.
(i) Jika persamaan kuadratik mempunyai dua punca yang nyata dan sama.
(ii) Jika persamaan kuadratik tidak mempunyai punca yang nyata.

Penyelesaian:
(i)
mx2 + (3 – 2m)+ m – 5 = 0
a = m, b = 32m, dan c = m – 5

Bagi dua punca yang nyata dan sama,
b2 – 4ac = 0
(3 – 2m)2 – 4m (m – 5) = 0
9 – 12m + 4m2– 4m2 + 20m = 0
8= –9
m = 9 8

(ii)
Bagi dua punca nyata yang tidak wujud
b2 – 4ac < 0
(3 – 2m)2 – 4m (m – 5) < 0
9 – 12m + 4m2– 4m2 + 20m < 0
8m + 9 < 0
m < 9 8


Soalan 2:
Cari nilai m jika garis lurus y = 5xm ialah satu tangen kepada lengkung y = x+ 2x + 1.

Penyelesaian: 
Diberi
y = 5xm -------- (1)
y = x2 + 2x + 1 --- (2)

Gantikan (1) ke dalam (2)
5xm = x2 + 2x + 1
x2 – 3x + 1 + m = 0 ----- (3)
a = 1, b = –3, dan c = 1 + m

Tangen kepada lengkung mempunyai satu punca, iaitu
b2 – 4ac = 0
(–3)2– 4(1) (1 + m) = 0
9 – 4 – 4m = 0
5 – 4m = 0
4m = 5
m = 5 4



2.10.2 Fungsi Kuadratik, SPM Praktis (Soalan Pendek)
Soalan 3:
Diberi bahawa 3 dan s + 4 ialah punca-punca bagi persamaan kuadratik x2 + (t – 1)x + 6 = 0, dengan keadaan sdan t ialah pemalar. Cari nilai s dan nilai t.

Penyelesaian:
x2 + (t – 1)x + 6 = 0
x2 – (1 – t)+ 6 = 0
a = 1, b = (1 – t), dan c = 6

3 dan s + 4 ialah punca-punca bagi persamaan. 
Guna Hasil darab punca untuk mencari nilai s.
3 × ( s + 4 ) = c a
3 (s + 4) = 6
s + 4 = 2
s = –2  

Guna Hasil tambah punca untuk mencari nilai t.
3 + ( s + 4 ) = b a
3 + s + 4 = 1 – t
3 + (–2) + 4 1= – t
4 = – t
t = 4


Soalan 4:
Diberi satu daripada punca persamaan kuadratik x2– 9x + m = 0 ialah setengah kali punca yang satu lagi. Cari nilai bagi m.

Penyelesaian:
Katakan α dan β ialah dua punca bagi x2 – 9x + m = 0.
Bandingkan x2 – 9x + m = 0 dengan persamaan kuadratik ax2 + bx + c = 0.
a = 1, b = –9, dan c = m.

Hasil tambah dua punca,
α + β = b a = ( 9 1 ) = 9
 
Katakan,  β= α 2 punca kedua ialah setengah daripada punca pertama Dari α+β=9 α+ α 2 =9 3α 2 =9 α=6

Hasil darab dua punca,
α β = c a α ( α 2 ) = m m = α 2 2 = 6 2 2 = 18


Soalan 5:
Cari nilai minimum bagi fungsi f (x) = 2x2 + 6x + 5. Nyatakan nilai x yang menjadikan f (x) satu nilai minimum.

Penyelesaian:
Menyempurnakan kuasa dua bagi f (x) dalam bentuk f (x) = (x + p)2 + q untuk mencari nilai minimum bagi fungsi f (x).

f( x )=2 x 2 +6x+5 =2[ x 2 +3x+ 5 2 ] =2[ x 2 +3x+ ( 3× 1 2 ) 2 ( 3× 1 2 ) 2 + 5 2 ]
=2[ ( x+ 3 2 ) 2 9 4 + 5 2 ] =2[ ( x+ 3 2 ) 2 + 1 4 ] =2 ( x+ 3 2 ) 2 + 1 2

Didapati a = 2 > 0, maka f (x) mempunyai nilai minimum apabila x= 3 2 . Nilai minimum bagi
f (x) = ½.


Soalan 6:
Fungsi kuadratik f (x) = –x2 + 4x + k2 , dengan keadaan k ialah pemalar, mempunyai nilai maksimum 8.
Cari nilai-nilai yang mungkin bagi k.

Penyelesaian: :
f (x) = –x2 + 4x + k2
f (x) = –(x2 – 4x) + k2 ← [cara menyempurnakan kuasa dua bagi f (x) dalam bentuk f (x) = (x + p)2 + q]
f (x) = –[x2 – 4x + (–2)2 – (–2)2 ] + k2
f (x) = –[(x – 2)2 – 4] + k2
f (x) = –(x – 2)2 + 4 + k2

Diberi nilai maksimum ialah 8.
Maka, 4 + k2 = 8
  k2 = 4
  k = ±2


Soalan 7:
Garis lurus y = 5x – 1 tidak bersilang dengan lengkung y = 2x2 + x + h. Carikan julat nilai h.

Penyelesaian:
y=5x1  ...... (1) y=2 x 2 +x+h ...... (2) Gantikan (1) ke dalam (2), 5x1=2 x 2 +x+h 2 x 2 +x+h5x+1=0 2 x 2 4x+h+1=0   b 2 4ac<0 ( 4 ) 2 4( 2 )( h+1 )<0  168h8<0 8<8h h>1


Soalan 8:
Cari nilai maksimum bagi fungsi 5 – x – 2x2 , dan nilai x apabila ini berlaku.

Penyelesaian:
5x2 x 2 =2 x 2 x+5 =2[ x 2 + 1 2 x 5 2 ] =2[ x 2 + 1 2 x+ ( 1 4 ) 2 ( 1 4 ) 2 5 2 ] =2[ ( x+ 1 4 ) 2 1 16 5 2 ] =2[ ( x+ 1 4 ) 2 41 16 ] =2 ( x+ 1 4 ) 2 +5 1 8

Nilai 5x2 x 2  adalah maksimum apabila 2 ( x+ 1 4 ) 2 =0   x= 1 4 Nilai maksimum bagi 5x2 x 2  ialah 5 1 8 .



Soalan 9:
Cari julat nilai k jika persamaan kuadratik 3(x2kx – 1) = kk2 mempunyai dua punca nyata yang berbeza.

Penyelesaian:
3( x 2 kx1 )=k k 2 3 x 2 3kx3k+ k 2 =0 3 x 2 3kx+ k 2 k3=0 a=3,b=3k,c= k 2 k3 Dua punca nyata berbeza. b 2 4ac>0 ( 3k ) 2 4( 3 )( k 2 k3 )>0 9 k 2 12 k 2 +12k+36>0 3 k 2 +12k+36>0 k 2 +4k+12>0 k 2 4k12<0 ( k+2 )( k6 )<0 k=2,6



Julat nilai k ialah 2<k<6.


Soalan 10:
Diberi persamaan kuadratik hx2 – (h + 2)x – (h – 4) = 0 mempunyai punca-punca yang nyata dan berbeza. Cari julat nilai h.

Penyelesaian:
Persamaan kuadratik h x 2 ( h+2 )x( h4 )=0 mempunyai punca-punca yang nyata dan berbeza. Maka,  b 2 4ac>0 ( h2 ) 2 4( h )( h+4 )>0 h 2 +4h+4+4 h 2 16h>0 5 h 2 12h+4>0 ( 5h2 )( h2 )>0 Pekali  h 2  positif, graf melengkung ke bawah ( 5h2 )( h2 )=0 h= 2 5 ,2



Julat nilai h bagi ( 5h2 )( h2 )>0 ialah  h< 2 5  atau h>2.


Leave a Comment