1.6.1 Fungsi, SPM Praktis (Kertas 2 Soalan 1 – 5)


Soalan 1:
Fungsi f dan g ditakrifkan sebagai f : xx– 1 dan  g : x 3 x x + 4 .  Cari
(a) nilai gf(3),
(b) nilai fg(-1 ),
(c) fungsi gubahan fg,
(d) fungsi gubahan gf,
(e) fungsi gubahan g2 ,
(f) fungsi gubahan f2.

Penyelesaian:
 





Soalan 2:
Diberi f: xhx + k dan f2 : x → 4x + 15.
 (a) Cari nilai dan k.
 (b) Ambil nilai h> 0, cari nilai-nilai x di mana f (x2) = 7x
 
Penyelesaian:
(a)
Langkah 1: cari f2 (x)
Diberi f (x) = hx + k
f2 (x) = ff (x) = f (hx + k)
= h (hx + k) + k
= h2x + hk + k

Langkah 2:
bandingkan dengan f2(x) yang diberi
f2 (x) = 4x + 15
h2x + hk + k = 4x + 15
h2 = 4
h = ± 2
Apabila, h = 2
hk + k = 15
2k + k = 15
k = 5
Apabila, h = –2
hk + k = 15
–2k + k = 15
k = –15

(b)
h > 0, h = 2, k = 5
Diberi f (x) = hx k
f (x) = 2x + 5
 
f (x2) = 7x
2 (x2) + 5 = 7x
2x2 7x+ 5 = 0
(2x 5)(– 1) = 0
2x 5 = 0 atau x – 1= 0
x = 5/2 atau x = 1



Soalan 3:
Fungsi f dan g ditakrifkan oleh
f : x 2 x 3 g : x 2 x ; x 0
Ungkapkan dalam bentuk yang serupa
(a) ff,
(b) gf,
(c) f2 , Hitungkan nilai x supaya ff(x) = gf(x).

Penyelesaian:
(a)
f f ( x ) = f [ f ( x ) ]   = f ( 2 x 3 )   = 2 ( 2 x 3 ) 3   = 4 x 9 Jadi,  f f : x 4 x 9


(b)
g f ( x ) = g [ f ( x ) ]    = g ( 2 x 3 )    = 2 2 x 3 Jadi,  g f : x 2 2 x 3

(c)
Katakan  f 1 ( x ) = y , maka f ( y ) = x    2 y 3 = x    y = x + 3 2 maka   f 1 ( x ) = x + 3 2 f 1 : x x + 3 2 Apabila  f f ( x ) = g f ( x ) , 4 x 9 = 2 2 x 3 ( 4 x 9 ) ( 2 x 3 ) = 2 8 x 2 30 x + 27 = 2 8 x 2 30 x + 25 = 0 ( 4 x 5 ) ( 2 x 5 ) = 0 4 x 5 = 0    atau     2 x 5 = 0 x = 5 4  atau    x = 5 2


Soalan 4:
Fungsi f dan g ditakrifkan oleh
f ( x ) = 3 x 2 g ( x ) = 3 x , x 0 Cari (a)  f 1 ( 2 ) , (b) g f ( 3 ) , (c) fungsi  h  jika diberi  h f ( x ) = 3 x + 2 , (d) fungsi  k  jika diberi  f k ( x ) = 4 x 7.

Penyelesaian:
(a)
Katakan  f 1 ( 2 ) = x , maka f ( x ) = 2   3 x 2 = 2     3 x = 4   x = 4 3 f 1 ( 2 ) = 4 3

(b)
g f ( 3 ) = g [ 3 ( 3 ) 2 ]     = g ( 11 )     = 3 11

(c)
h [ f ( x ) ] = 3 x + 2 h ( 3 x 2 ) = 3 x + 2 Katakan  y = 3 x 2 Maka   x = y + 2 3 h ( y ) = 3 ( y + 2 3 ) + 2     = y + 2 + 2     = y + 4 Maka  h ( x ) = x + 4

(d)
f [ k ( x ) ] = 4 x 7 3 k ( x ) 2 = 4 x 7 3 k ( x ) = 4 x 5 k ( x ) = 4 x 5 3

1 thought on “1.6.1 Fungsi, SPM Praktis (Kertas 2 Soalan 1 – 5)”

Leave a Comment