4.6.1 Indeks, Surd dan Logaritma, SPM Praktis (Soalan Pendek)


Soalan 1:
Selesaikan persamaan, log3 [log2(2x – 1)] = 2

Penyelesaian:
log3 [log2 (2x – 1)] = 2 ← (jika log a N = x, N = ax)
log2 (2x – 1) = 32
log2 (2x – 1) = 9
2x – 1 = 29
x = 256.5


Soalan 2
Selesaikan persamaan, log16[log2(5x4)]=log93  

Penyelesaian:
log16[log2(5x4)]=log93log16[log2(5x4)]=14log93=log9312=12log93=12(1log39)=12(12)=14log2(5x4)=1614log2(5x4)=25x4=225x=8x=85


Soalan 3
Selesaikan persamaan, 5log4x=125

Penyelesaian:
5log4x=125log55log4x=log5125ambil log asas 5di kedua-dua belah(log4x)(log55)=3(log4x)(1)=3x=43=64



Soalan 4
Selesaikan persamaan, 5log5(x+1)=9

Penyelesaian:
5log5(x+1)=9log55log5(x+1)=log59log5(x+1).log55=log59log5(x+1)=log59x+1=9x=8

Leave a Comment