3.7.2 Pengamiran, SPM Praktis (Kertas 1) January 24, 2022April 7, 2021 by Soalan 2: Diberi bahawa ∫4(1+x)4dx=m(1+x)n+c, Cari nilai-nilai m dan n. Penyelesaian: ∫4(1+x)4dx=m(1+x)n+c∫4(1+x)−4dx=m(1+x)n+c4(1+x)−3−3(1)+c=m(1+x)n+c−43(1+x)−3+c=m(1+x)n+cm=−43,n=−3 Soalan 3: Diberi ∫−122g(x)dx=4, dan∫−12[mx+3g(x)]dx=15. Cari nilai pemalar m. Penyelesaian: ∫−12[mx+3g(x)]dx=15∫−12mxdx+∫−123g(x)dx=15[mx22]−12+3∫−12g(x)dx=15[m(2)22−m(−1)22]+32∫−122g(x)dx=152m−12m+32(4)=15←diberi∫−122g(x)dx=432m+6=1532m=9m=9×23m=6 Soalan 4: Diberi ddx(2x3−x)=g(x), cari∫12g(x)dx. Penyelesaian: Diberiddx(2x3−x)=g(x)∫g(x)dx=2x3−xdengan itu,∫12g(x)dx=[2x3−x]12=2(2)3−2−2(1)3−1=4−1=3