3.7.5 Pengamiran, SPM Praktis (Kertas 1) January 24, 2022April 10, 2021 by Soalan 13:Diberi y=x22x−1, tunjukkandydx=2x(x−1)(2x−1)2. Seterusnya, nilaikan ∫−22x(x−1)4(2x−1)2 dx. Penyelesaian:y=x22x−1dydx=(2x−1)(2x)−x(2)(2x−1)2=4x2−2x−2x2(2x−1)2=2x2−2x(2x−1)2=2x(x−1)(2x−1)2 (tertunjuk)∫−222x(x−1)(2x−1)2 dx=[x22x−1]−2218∫−222x(x−1)(2x−1)2 dx=18[x22x−1]−2214∫−22x(x−1)(2x−1)2 dx=18[(222(2)−1)−((−2)22(−2)−1)] =18[(43)−(4−5)] =18(3215) =415