4.6.4 Indeks, Surd dan Logaritma, SPM Praktis (Soalan Pendek)


Soalan 12
Selesaikan persamaan, log25x+log416x=6

Penyelesaian:
log25x+log416x=6log25x+log216xlog24=6log25x+log216x2=62log25x+log216x=12log2(5x)2+log216x=12log2(25x)+log216x=12log2(25x)(16x)=12log2400x2=12400x2=212x2=10.24x=3.2


Soalan 13
Diberi bahawa 2 log2 (xy) = 3 + log2 x + log2y. Buktikan x2 + y– 10xy = 0.

Penyelesaian:
2 log2 (xy) = 3 + log2x + log2 y
log2 (xy)2 = log2 8 + log2 x + log2y
log2 (xy)2 = log2 8xy
(xy)2 = 8xy
x2– 2xy + y2 = 8xy
x2 + y2 – 10xy = 0 (terbukti)


Soalan 14
Diberi bahawa 2 log2 (x + y) = 3 + log2 x + log2y. Buktikan x2 + y= 6xy.
 
Penyelesaian:
2 log2 (x + y) = 3 + log2x + log2 y
log2 (x+ y)2 = log2 8 + log2 x + log2y
log2 (x+ y)2 = log2 8xy
(x + y)2 = 8xy
x+ 2xy + y2 = 8xy
x2 + y2 = 6xy  (terbukti)

Leave a Comment