Soalan 11:
Buktikan identiti
Penyelesaian:
Soalan 12:
Buktikan identiti
Penyelesaian:
Soalan 13:
Buktikan identiti tan2 θ– sin2 θ = tan2θ sin2 θ
Penyelesaian:
Soalan 14:
Buktikan identiti kosek2 θ (sek2 θ – tan2 θ) – 1 = kot2 θ
Penyelesaian:
Sebelah kiri,
kosek2 θ (sek2θ – tan2 θ) – 1
= kosek2 θ (1) – 1 ← (tan2 θ + 1 = sek2θ , sek2 θ – tan2θ = 1)
= kosek2 θ – 1
= kot2 θ ←(1 + kot2 θ = kosek2 θ , kosek2 θ – 1 = kot2 θ )
= Sebelah kanan