2.6 Persamaan Kuadratik, SPM Praktis (Kertas 2)


2.6 Persamaan Kuadratik, SPM Praktis (Kertas 2)
Soalan 5 :
Diberi 3t dan (t – 7) ialah punca-punca persamaan kuadratik 4x2 – 4x + m= 0 dengan m sebagai pemalar.
(a)  Cari nilai t dan nilai m.
(b)  Seterusnya, bentuk satu persamaan kuadratik dengan punca-punca 4t dan 2t + 6.

Penyelesaian:
(a)
Diberi 3t dan (t – 7) ialah punca-punca persamaan kuadratik 4x2 – 4x + m= 0
a = 4, b = – 4, c = m
Hasil tambah punca = b a 3 t + ( t 7 ) = 4 4
3t + t– 7 = 1
4t = 8
t = 2


Hasil darab punca = c a 3 t ( t 7 ) = m 4  
4 [3(2) (2 – 7)] = m ← (gantikan t = 2)
4 [3(2) (2 – 7)] = m
4 (–30) = m
m = –120


(b)
t = 2
4t = 4(2) = 8
2t + 6 = 2(2) + 6 = 10

Hasil tambah punca = 8 + 10 = 18
Hasil darab punca = 8(10) = 80

Guna rumus, x2– (hasil tambah punca)x + hasil darab punca = 0
Oleh itu, persamaan kuadratik ialah
x2 – 18x + 80 = 0

Leave a Comment