3.7 Pengamiran, SPM Praktis (Kertas 1)


3.7 Pengamiran, SPM Praktis (Kertas 1)
Soalan 2:
Diberi bahawa 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ,
Cari nilai-nilai dan n.

Penyelesaian:
4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 3 3 ( 1 ) + c = m ( 1 + x ) n + c 4 3 ( 1 + x ) 3 + c = m ( 1 + x ) n + c m = 4 3 , n = 3


Soalan 3:
Diberi
1 2 2 g ( x ) d x = 4 , dan 1 2 [ m x + 3 g ( x ) ] d x = 15.
Cari nilai pemalar m.

Penyelesaian:
1 2 [ m x + 3 g ( x ) ] d x = 15 1 2 m x d x + 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] 1 2 + 3 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 m ( 1 ) 2 2 ] + 3 2 1 2 2 g ( x ) d x = 15 2 m 1 2 m + 3 2 ( 4 ) = 15 diberi 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6


Soalan 4:
Diberi
d d x ( 2 x 3 x ) = g ( x ) , cari 1 2 g ( x ) d x .

Penyelesaian:
Diberi d d x ( 2 x 3 x ) = g ( x ) g ( x ) d x = 2 x 3 x dengan itu, 1 2 g ( x ) d x = [ 2 x 3 x ] 1 2 = 2 ( 2 ) 3 2 2 ( 1 ) 3 1 = 4 1 = 3

Leave a Comment